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ABSTRACT: The modern railway vehicles are equipped with primary and secondary suspen-
sion. The Non Suspended Masses (N.S.M.) of a railway vehicle are the masses that are located 
under the primary suspension (that is the wheels, the axles and – possibly – some parts of the 
electric-motors in the case that they are not suspended on the frames of the bogies), and act 
without damping directly on the track. Part of the mass of the railway track also participates in 
the movement of the Non Suspended Masses of the vehicles. In order to calculate the load -and 
after that the actions- on the track panel in the position of a sleeper at the time when an isolated 
axle of the vehicle passes, it is necessary to determine the mass of the railway track that partici-
pates in the movement. In this paper the track is modeled as a vibrating string. Its movement is 
analyzed theoretically, and the length that participates and influences the movement of the Non 
Suspended Masses is calculated. The result of the theoretical calculation is compared with the 
results of the measurements that have been carried out in a number of countries. The influence 
of the track’s dynamic stiffness and damping is also investigated. Finally the influence of the 
variation of the track's damping coefficient ζ from 0.1 to 0.3 on the track mass's value is investi-
gated and compared to the measurements.  
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ΠΕΡΙΛΗΨΗ: Τα σύγχρονα σιδηροδρομικά οχήματα διαθέτουν πρωτεύουσα και δευτερεύουσα 
ανάρτηση. Οι Μη Ανηρτημένες Μάζες (Μ.Α.Μ.) ενός σιδηροδρομικού οχήματος βρίσκονται 
"κάτω" από την πρωτεύουσα ανάρτηση (δηλαδή οι τροχοί, οι άξονες και -πιθανώς- ένα τμήμα 
του ηλεκτροκινητήρα στην περίπτωση που δεν έχει πλήρως αναρτηθεί από το φορείο), και 
δρουν χωρίς καμία απόσβεση απευθείας επί της γραμμής. Όμως και ένα τμήμα της μάζας της 
σιδηροδρομικής γραμμής συμμετέχει επίσης στην κίνηση των Μη Ανηρτημένων Μαζών των 
οχημάτων.  Για να υπολογισθούν τα φορτία -και στη συνέχεια οι δράσεις-   επί της εσχάρας της 
γραμμής στις θέσεις στήριξης της σιδηροτροχιάς, τους στρωτήρες, τη στιγμή που ένας 
μεμονωμένος άξονας διέρχεται, είναι αναγκαίο να καθορισθεί η μάζα γραμμής που συμμετέχει 
στην κίνηση.  Στο παρόν άρθρο η σιδηροδρομική γραμμή προσομοιώνεται ως ταλαντούμενη 
χορδή. Η κίνησή της αναλύεται θεωρητικά και υπολογίζεται το μήκος της που συμμετέχει και 
επηρεάζει την κίνηση των Μη Ανηρτημένων Μαζών. Τα αποτελέσματα του θεωρητικού 
υπολογισμού συγκρίνονται με τα αποτελέσματα των μετρήσεων που έχουν διεξαχθεί σε 
διάφορες χώρες. Επίσης εξετάζονται η επιρροή της δυναμικής δυσκαμψίας και η απόσβεση της 
γραμμής.  Τέλος η επιρροή της μεταβολής του συντελεστή απόσβεσης ζ της γραμμής από 0,1 
έως 0,3 επί της τιμής της μάζας γραμμής διερευνάται και συγκρίνεται με τις μετρήσεις.  

Στον τιμητικό τόμο για το Γιώργο Γιαννόπουλο, ΑΠΘ 2012
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1 ΕΙΣΑΓΩΓΗ1

Η κίνηση των σιδηροδρομικών οχημάτων επί της σιδηροδρομικής γραμμής είναι τυχαίο 
φαινόμενο. Η δυναμική φόρτιση που δημιουργείται (προσαύξηση του στατικού φορτίου 
του τροχού) οφείλεται στην κίνηση του οχήματος και -κυρίως- από το κρουστικό 
φορτίο των Μη Ανηρτημένων Μαζών (Μ.Α.Μ.) του οχήματος (Γιαννακός & 
Βλασοπούλου, 1994), που διεγείρονται από τη γεωμετρία της επιφάνειας κύλισης των 
σιδηροτροχιών (και τα ελαττώματά της). Στην κίνηση των Μ.Α.Μ. του οχήματος 
συμμετέχει και ένα τμήμα της επιδομής της γραμμής  και προσαυξάνει την τιμή τους με 
συνέπεια να επηρεάζεται η δυναμική συνιστώσα των δράσεων. Στη συνέχεια θα 
διερευνηθεί η επιρροή της απόσβεσης της γραμμής στη μάζα γραμμής που συμμετέχει 
στην κίνηση των Μ.Α.Μ.  

 

2 ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΔΡΑΣΕΩΝ/ΑΝΤΙΔΡΑΣΕΩΝ ΕΠΙ ΣΤΡΩΤΗΡΩΝ 

Η θεωρητική ανάλυση βασίζεται κυρίως στη θεωρία του Winkler (Winkler, 1867) 
για απειρομήκη δοκό επί ελαστικού εδάφους. Στη διεθνή βιβλιογραφία τέσσερεις 
μέθοδοι παρατίθενται κυρίως (βλ. Giannakos, 2010 a και Γιαννακός, 2010): 

Μέθοδος στην Αμερικανική βιβλιογραφία 
 Όπως περιγράφεται στα: Hay (1982, σελ. 247-273), AREMA (2005, σελ. 16-10-26 

έως 16-10-32 και Κεφάλαιο 30), Selig & Waters (1994/2000, σελ.5.1-5.4 κ.λπ.). Η 
πλέον δυσμενής περίπτωση για δράση/αντίδραση σε κάθε σημείο στήριξης (στρωτήρα) 
δίδεται (βλ. Giannakos, 2011):  

 
                                
                                                                                                                                  (1)                                                                                                                                                           
 
όπου:  Qτροχου το στατικό φορτίο ανά τροχό, D33 σε ίντσες η διάμετρος ενός τροχού 

33 ιντσών, Dτροχου σε ίντσες η διάμετρος ενός τροχού του εξεταζόμενου οχήματος,  V η 
ταχύτητα σε miles/h, και  A̅stat ο ίδιος συντελεστής (αδιάστατος) όπως στην Ευρωπαϊκή 
βιβλιογραφία παρακάτω και δίδεται από τον τύπο: 

 
            
                                                                                                                                   (2)                                                                                                                                                                   
  
όπου: ρολικο το "μέτρο έδρασης της σιδηροτροχιάς" (rail support modulus) ή "ολική 

στατική δυσκαμψία της γραμμής" (total track static stiffness) σε kN/mm, ℓ η απόσταση 
μεταξύ των στρωτήρων, E, J το μέτρο ελαστικότητος και η ροπή αδρανείας της 
σιδηροτροχιάς.   

Μέθοδος στην Γερμανική βιβλιογραφία 
Στη Γερμανική βιβλιογραφία, γνωστή ως μέθοδος Zimmermann (Zimmermann, 

1941),  η πλέον δυσμενής αντίδραση/δράση ανά στρωτήρα Rmax εξαρτάται από την 
πιθανότητα Ρ "μη υπέρβασης" και για Ρ= 99.7% δίδεται από (Fastenrath, 1981, Eisen-
mann, 2004): 

                                                      
1 Το θέμα των Μη Ανηρτημένων Μαζών το διερευνούσα την εποχή που εκπονούσα τη διδακτορική μου 

διατριβή στο Α.Π.Θ., υπό την επίβλεψη του Γιώργου Γιαννόπουλου. Πολλά από τα στοιχεία που 
περιλαμβάνονται στο άρθρο έχουν παρουσιασθεί στην εργασία μου "Διαχείριση Σιδηροδρομικής 
Υποδομής" για το μάθημα του κ. Μουρατίδη (που είχα παρακολουθήσει κατά τη διάρκειά της) και στο 
τελικό κείμενο της διδακτορικής μου διατριβής, αφού αφορά θέματα σιδηροδρομικών υποδομών 
υψηλών ταχυτήτων και "διαλειτουργικών" σιδηροδρομικών δικτύων.   
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                                                                                                                                  (3) 
                                                                                                                                                                   
για V ≥ 60 km/h. Εάν V < 60km/h τότε Rmax=1.9·Qτροχου·A̅στατ                              (3a)  
Μέθοδος στην Γαλλική βιβλιογραφία 
Η μέθοδος που παρατίθεται στη Γαλλική βιβλιογραφία (Alias, 1984 και Prud’ 

homme A., & Erieau, 1976) καλύπτει μια πιθανότητα Ρ "μη υπέρβασης" 95.5%, 
διανέμει το συνολικό φορτίο στο στρωτήρα, κάτω από τη θέση του φορτίου με 
συντελεστή 1.35∙A̅στατ : 

 
                                                                                                                   (4)  
 
 
όπου  Qα = το φορτίο λόγω ανεπάρκειας υπερύψωσης, 2 συντελεστής δυναμικής 

φόρτισης για πιθανότητα "μη υπέρβασης" 95.5 %, σ(ΔQΜΑΜ)=τυπική απόκλιση της 
δυναμικής συνιστώσας του φορτίου της οφειλόμενης στις Μη Ανηρτημένες Μάζες 
(ΜΑΜ) του οχήματος, σ(ΔQΑΜ) = τυπική απόκλιση της δυναμικής συνιστώσας του 
φορτίου της οφειλόμενης στις  Ανηρτημένες Μάζες (ΑΜ) του οχήματος.  

Μέθοδος Giannakos (2004) 
Μετά από υπερδεκαετές ερευνητικό πρόγραμμα, στο ελληνικό σιδηροδρομικό 

δίκτυο, λόγω εμφάνισης εκτεταμένων ρηγματώσεων σε στρωτήρες σκυροδέματος 
τοποθετημένους στη γραμμή, σε ποσοστό μεγαλύτερο από 60%, αναπτύχθηκε από το 
συγγραφέα η μέθοδος αυτή για τις πραγματικές συνθήκες της γραμμής (Γιαννακός, 
2002, Giannakos, 2004, Giannakos & Loizos, 2009). Οι δράσεις/αντιδράσεις στην 
εσχάρα γραμμής υπολογίζονται για πιθανότητα "μη υπέρβασης" 99.7%: 

                                                                                                                                                            
                                                                                                                                  (5) 
 
όπου  A̅δυναμ = αδιάστατος δυναμικός συντελεστής αντίδρασης του στρωτήρα, 3 

συντελεστής δυναμικής φόρτισης για πιθανότητα "μη υπέρβασης" 99.7 %, 
σ(ΔQΜΑΜ)=τυπική απόκλιση της δυναμικής συνιστώσας του φορτίου της οφειλόμενης 
στις Μη Ανηρτημένες Μάζες (ΜΑΜ) του οχήματος, σ(ΔQΑΜ)= τυπική απόκλιση της 
δυναμικής συνιστώσας του φορτίου της οφειλόμενης στις  Ανηρτημένες Μάζες (ΑΜ) 
του οχήματος (για λεπτομέρεις βλ. Giannakos & Loizos, 2009) και: 

 
                                                                                                                                  (6) 
 
όπου hΓΡΑΜΜΗΣ η συνολική δυναμική δυσκαμψία της γραμμής που δίδεται από τον 

τύπο: 
 
 
                                                                                                                                  (7)    
 
όπου y η βύθιση της γραμμής που προκαλείται από το Qολικο. 
 
Η μέθοδος αυτή προβλέπει την παρατηρηθείσα εκτεταμένη ρηγμάτωση επί του 

ελληνικού σιδηροδρομικού δικτύου (σε ποσοστό άνω του 60% των επί γραμμής 
στρωτήρων σκυροδέματος U2/U3 βλ. Γιαννακός & Βλασοπούλου, 1994 και Γιαννακός, 
2002) σε αντίθεση με τις άλλες τρεις μεθόδους που προβλέπουν ή καθόλου (0%) ή 
σποραδική ρηγμάτωση (της τάξεως 1-2%), όπως φαίνεται στο Σχήμα 1. 
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Σχήμα 1 Δράσεις επί της εσχάρας της γραμμής στα σημεία στήριξης τησ 

σιδηροτροχιάς (στρωτήρες) σύμφωνα με (1) τη μέθοδο της Γερμανικής βιβλιογραφίας 
(Εξισ. 3), (2) τη μέθοδο της Γαλλικής βιβλιογραφίας (Εξισ. 4), (3) τη μέθοδο της 
Αμερικανικής βιβλιογραφίας (Εξισ. 1) και (4) τη μέθοδο Giannakos (2004). Φαίνονται 
με σκίαση οι περιοχές ρηγμάτωσης και αστοχίας για τους διμερείς στρωτήρες 
σκυροδέματος τύπου U2/U3. 

3 ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΟΧΗΜΑΤΟΣ - ΣΙΔΗΡ. ΓΡΑΜΜΗΣ ΩΣ ΣΥΝΟΛΟ 
ΕΛΑΤΗΡΙΩΝ ΑΠΟΣΒΕΣΤΗΡΩΝ  

Είναι πλέον ξεκάθαρο ότι οι Μ.Α.Μ. παίζουν καθοριστικό ρόλο στην καταπόνηση 
της γραμμής όχι μόνο στη Γαλλική (Alias, 1984) και την Ελληνική βιβλιογραφία 
(Γιαννακός, 2002) αλλά και στη Γερμανική (Muller-Boruttau et al. 1998).  Κατά την 
κίνηση ενός σιδηροδρομικού οχήματος επί της σιδηροδρομικής γραμμής υπάρχει 
αλληλεπίδραση μεταξύ τους και ουσιαστικά λειτουργούν ως ένα σύστημα 
"σιδηροδρομικό όχημα - σιδηροδρομική γραμμή" ή επί το απλούστερον "όχημα - 
γραμμή". Το όχημα -στους σύγχρονους σιδηροδρόμους, διαλειτουργικούς και υψηλών 
ταχυτήτων- διαθέτει σύστημα ανάρτησης με δύο επίπεδα: την πρωτεύουσα και τη 
δευτερεύουσα. Όσες μάζες του οχήματος βρίσκονται κάτω από την πρωτεύουσα 
ανάρτηση επιπίπτουν χωρίς καμμία απολύτως απόσβεση επί της γραμμής επιφέροντας 
ένα πολύ σημαντικό κρουστικό φορτίο επ' αυτής. Η πρωτεύουσα ανάρτηση αποτελείται 
από τους δύο τροχούς κάθε άξονα, τον άξονα και σε περίπτωση κινητήριας μονάδας 
(Γιαννακός, 2004, 2000, Giannakos 2004, Alias 1984):  

(α) με ημιανηρτημένο ηλεκτροκινητήρα (βλ. Σχήμα 2) οπότε ένα μέρος της μάζας 
του κινητήρα αναρτάται στο φορείο και ένα μέρος της μάζας του αναρτάται στον 
άξονα, οι Μ.Α.Μ. προσαυξάνονται με το τμήμα της μάζας του ηλεκτροκινητήρα που 
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"φορτίζει" τον άξονα, συν τα "γρανάζια" μετάδοσης κίνησης του άξονα. Η τιμή της 
μάζας αυτής δίδεται από τον κατασκλευαστή του τροχαίου υλικού.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Σχήμα 2: Ημιανηρτημένος ηλεκτροκινητήρας στο φορείο και στον άξονα του 
οχήματος. 

 
(β) με πλήρως ανηρτημένο κινητήρα οπότε ολόκληρη η μάζα του κινητήρα 

αναρτάται στο φορείο, τότε η επιβάρυνση του άξονα είναι μηδενική και δεν 
προσαυξάνονται  οι Μ.Α.Μ.  

Επιπλέον των μερών των οχημάτων που βρίσκονται κάτω από την πρωτεύουσα 
ανάρτησή τους και ένα τμήμα της επιδομής της γραμμής συμμετέχει στην κίνηση  των 
Μη Ανηρτημένων Μαζών του οχήματος και συνεπώς προστίθεται στην τυπική 
απόκλιση σ(ΔQMAM).  

Στο παρελθόν ο συγγραφέας του παρόντος έχει παρουσιάσει τρία άρθρα (Γιαννακός, 
2001, Giannakos, 2007, 2010 b) σε μια προσπάθεια προσέγγισης της θεωρητικής και 
της πρακτικής πλευράς του θέματος όπως προκύπτει από μετρήσεις επί γραμμής. Τρεις 
θεωρητικοί υπολογισμοί έχουν ήδη δημοσιευθεί: (α) χρησιμοποιώντας το  συντελεστή 
στατικής δυσκαμψίας της γραμμής  ρολικο  (β) χρησιμοποιώντας το  συντελεστή 
δυναμικής δυσκαμψίας της γραμμής  hΓΡΑΜΜΗΣ και (γ) χρησιμοποιώντας το  συντελεστή 
δυναμικής  δυσκαμψίας της γραμμής  hΓΡΑΜΜΗΣ και την επιρροή της απόσβεσης της 
γραμμής για τιμή του συντελεστή απόσβεσης ζ=0,30.  Στο παρόν άρθρο παρουσιάζεται 
μια παραμετρική επίλυση για την επιρροή της μεταβολής της απόσβεσης της γραμμής 
όπως εκφράζεται από το συντελεστή απόσβεσης ζ σε πραγματικές συνθήκες.σε μια 
παραμετρική διερεύνηση για τιμές του ζ κυμαινόμενες από 0,10 - 0,30. Τα 
αποτελέσματα των θεωρητικών λύσεων συγκρίνονται με αποτελέσματα πειραματικών 
μετρήσεων επί γραμμής.   

Το μοντέλο "οχήματος-γραμμής" παρουσιάζεται στο Σχήμα 3 όπου εμφαίνονται και 
η πρωτεύουσα και η δευτερεύουσα ανάρτηση του οχήματος όπως και η μάζα γραμμής 
που συμμετέχει στην κίνηση.  
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Σχήμα 3: Προσομοίωση συστήματος "όχημα - γραμμή" ως σύνολο ελατηρίων (με 
συντελεστή ρi και αποσβεστήρων με συντελεστή ci. Φαίνεται η πρωτεύουσα και η 
δευτερεύουσα ανάρτηση όπως και οι Μη Ανηρτημένες Μάζες στην έλλειψη με σκίαση.  

4 ΘΕΩΡΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΜΑΖΑΣ ΓΡΑΜΜΗΣ ΠΟΥ ΣΥΜΜΕΤΕΧΕΙ 
ΣΤΗΝ ΚΙΝΗΣΗ ΤΩΝ Μ.Α.Μ.  

Η ιδιοσυχνότητα ενός συστήματος -όπως η σιδηροδρομική γραμμή- μπορεί να 
υπολογιθεί χρησιμοποιώντας την εξίσωση ελεύθερης ταλάντωσης, χωρίς απόσβεση και 
χωρίς διεγείρουσα δύναμη από την ακόλουθη εξίσωση (αρχικές δημοσιεύσεις 
Γιαννακός, 2001, Giannakos, 2010 b): 

( )
2

2 0d ym m h y
dtΜΑΜ ΓΡΑΜΜΗΣ ΓΡΑΜΜΗΣ+ ⋅ + =⋅                                                   (8) 

όπου hΓΡΑΜΜΗΣ από την Εξισ. (7).  
Αν αμελήσουμε κατ' αρχάς τη μάζα γραμμής που συμμετέχει στην κίνηση των Μ.Α.Μ. 
η Εξισ. (8) γίνεται:  

 
                                                                                     (8a) 

 
Για να υπολογίσουμε όμως την παραλειφθείσα μάζα γραμμής (Σχ. 4 δεξιά):  

0

k T
m m dx

⋅

ΓΡΑΜΜΗΣ = ⋅∫                                                                                                  (9) 

όπου k ακέραιος που πρέπει να καθορισθεί. 
Η mΓΡΑΜΜΗΣ αντιστοιχεί στο μήκος κύματος λ της γραμμής ή το διπλάσιο του μήκους 
μεταξύ δύο διαδοχικών μηδενισμών της πρώτης παραγώγου y’, αφού η γραμμή δεν 

2

2 0
d y

h y
dt

mΜΑΜ ΓΡΑΜΜΗΣ⋅ + ⋅ =
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κινείται καθόλου στις θέσεις μηδενισμού της πρώτης παραγώγου που είναι η ταχύτητα 
κίνησης της γραμμής, Θα πρέπει να υπολογισθεί το μήκος κύματος λ. Η βύθιση y 
δίδεται (Γιαννακός, 2002 ): 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Σχήμα 4: Δρώσες δυνάμεις σε ταλαντούμενη χορδή (αριστερά) και ημιτονοειδής 
ταλάντωση με αρχικές συνθήκες y(0)=u(0)=0 και y'(0)=u’(0)=υ’ (δεξιά)  

( )-Kx
max

KQ
y = e (cosKx+ sinKx)= y x

2U
τροχου η

⋅
⋅                                                (10) 

όπου 44
1

4 4
UK

L EJ EJ
ολικορ

= = =


, και ( ) [cos sin ] Kxx e Kx Kxη −= ⋅ + και συνεπώς: 

 0max 2

Q K
y y

U
τροχου ⋅

= = (στη θέση εφαρμογής του φορτίου και  
0

Q 2
U y K

=
⋅

             (11) 

αξίζει να σημειωθεί ότι η η(x)  μηδενίζεται στα σημεία: cos Kx sin Kx= − → 
3

4
Kx

π
νπ= +   

Η περίοδος Τ=2π, και τα σημεία μηδενισμού: 1 2
3 3 11

2
4 4 4

,x x
K K K

π π π
π= = + = → 

                                                                                                

          , όπου U=ρολικο/ℓ             (12) 
 

Σε μια ταλάντωση το μήκος κύματος λ  στο "χωρικό πεδίο"  αντιστοιχεί στην περίοδο Τ 
στο "πεδίο συχνοτήτων", είναι ποιοτικά ίδιες παράμετροι. Εξ ορισμού το μήκος 
κύματος λ "διανύεται" σε χρόνο μιας περιόδου T.  Από την κλασική φυσική η γενική 
εξίσωση ενός ημιτονοειδούς κύματος είναι (Resnick et al., 1966): 

0 sin( )y y kx tω ϕ= ⋅ − −                                                                                         (13) 

4 4 4

8
11 3 4

2 2 2 2 2
4

2EJ EJ EJ

K U U UK

π
π π

λ π π
λ
π

−
= ⇒= = ⋅ ⋅ ⋅ ⋅= =


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όπου 2k π
λ

=  είναι ο γωνιακός κυματικός αριθμός (Φυσική, τομ. 3, Berkeley, σελ. 65) 

σε  rad/m που χαρακτηρίζει μία ταλάντωση στο "χωρικό πεδίο" και ω η γωνιακή 

ταχύτητα ή γωνιακή συχνότητα  (Φυσική, τομ. 1, Berkeley, σελ. 34, 36) 2
=

T
πω , που 

χαρακτηρίζει μία ταλάντωση στο "πεδίο συχνοτήτων"με ανάλογο τρόπο, φ η γωνία 

φάσης , and σ ο κυματικός αριθμός 1
=σ
λ

 . 

Η γενική εξίσωση που περιγράφει τη διάδοση ενός κύματος κατά μήκος μιας χορδής ή 
μιας επιμήκους κατασκευής (όπως π.χ. η γραμμή) η οποία συμπεριφέρεται όπως μια 
χορδή (Σχήμα 4 αριστερά), είναι η ακόλουθη (σε συγκεκριμένο σημείο 

x k xi ik
π π= ⇒ ⋅ =  από την Εξισ. 13): 

0 0sin( ( )) sin( )y y t y tπ ω ϕ ω ϕ= ⋅ − + = ⋅ +                                                      (14) 

Σε ημιτονοειδή ταλάντωση: 
2
=

T π
ω

 που αντιστοιχεί σε δύο διαδοχικούς μηδενισμούς, 

όπως και στο μήκος κύματος: 
2 k
λ π
= . Η ταχύτητα διάδοσης του κύματος υ:  

 
   

Θέτοντας z= x-υt έχουμε :  

0
2cosy y zπ
λ

= ⋅ ⋅  στο "χωρικό πεδίο”  και  0 0
2cos cosy y t y t
T
πω= ⋅ = ⋅                  (16) 

στο  “πεδίο συχνοτήτων”. 
Ο  γωνιακός κυματικός αριθμός k και η γωνιακή ταχύτητα ή γωνιακή συχνότητα ω 
εκφράζουν το ίδιο στάσιμο κύμα με διαφορετικές εξισώσεις παρόμοιας μορφής 
(Φυσική, τομ. 3, Berkeley, σελ. 65): 

( ), sin 2 sin 2 sin 2 sin 2 sin sint xx t A A t x A t kx
T

ψ π π πν πσ ω
λ

= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅              (17) 

Επιπλέον για τα στάσιμα κύματα η ακόλουθη εξίσωση ισχύει ως γενική μορφή 
(Φυσική, τομ. 3, Berkeley, σελ.62): 

( , ) ( ) cos( )x t A x tψ ω ϕ= ⋅ +                                                                                    (18) 

της οποίας η δεύτερη παράγωγος ως προς το χρόνο t δίδει την επιτάχυνση: 

2 2 2 ( ) cos( )2 A x t
t

ψ ω ψ ω ω ϕ∂
= − = − ⋅ ⋅ +

∂
                                                             (19) 

και η δεύτερη παράγωγος ως προς την τετμημένη (στο "χωρικό πεδίο")  x  είναι (Σχ. 4 
αριστ.): 

( ) ( )0 0

0 0 0

, ( .13) sin cos
2 2

2cos( ) cos( ) cos ( )  (15)

ό y y kx t y kx t
T k

y y kx t y kx k t y x t

λ ω π πυ και για ϕ απ ξισ ω ω

πω υ υ
λ

 = = = − Ε ⇒ = ⋅ − − + = ⋅ − + ⇒ 
 

⇒ = ⋅ − = ⋅ − = ⋅ −
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2 2 ( )cos( )2 2
d A xt

x dx

ψ ω ϕ∂
= + ⋅

∂
                                                                             (20) 

Αν δεχθούμε (για λόγους απλούστευσης) ότι οι ταλαντώσεις είναι γραμμικές, δηλαδή 
λαμβάνουν χώρα μόνον κατά μήκος του άξονα x  (Σχ. 4 αριστ.), τότε για ένα 
στοιχειώδες τμήμα μάζας ΔΜ της ταλαντούμενης χορδής με μήκος Δx και κέντρο  x0 
θα ισχύει: 

0 x m dxρ∆Μ = ⋅∆ = ⋅                                                                                            (21) 

όπου ρ0 ή m η πυκνότητα μάζης ανά μονάδα μήκους Δx . 
Η χορδή εντείνεται στα δύο της άκρα από δύο δυνάμεις: T1sinθ1 αριστερά με 

κατεύθυνση προς τα κάτω και T2sinθ2 στα δεξιά με κατεύθυνση προς τα άνω (Σχήμα 4 
αριστερά). Η συνισταμένη δύναμη Fx(t) είναι: 

( ) sin - sin2 2 1 1=F t T Tx θ θ                                                                                   (22) 

Θα προσπαθήσουμε να εκφράσουμε τη δύναμη Fx(t) ως συνάρτηση της ψ(x,t) και της 

πρώτης παραγώγου της στο "χωρικό πεδίο", που είναι η κλίση της χορδής 

στη θέση x0 στο χρόνο t.  

Για να διατυπώσουμε τη διαφορική εξίσωση κίνησης της χορδής θεωρούμε μικρές 
ταλαντώσεις ή ταλάντωση σπειροειδούς ελατηρίου.  Υποθέτουμε ότι η εντείνουσα τη 
χορδή δύναμη Τ0 είναι σταθερή και η χορδή σε ισορροπία. Στην προσέγγιση  
σπειροειδούς ελατηρίου η δύναμη Τ είναι μεγαλύτερη από την Τ0 κατά ένα παράγοντα 
1/cosθ, επειδή το στοιχειώδες τμήμα έχει επιμηκυνθεί κατά ένα παράγοντα 1/cosθ, 
συνεπώς  Τcosθ = Τ0. Στην προσέγγιση μικρών ταλαντώσεων αμελείται η επιμήκυνση 
του στοιχειώδους τμήματος και θεωρούμε      cosθ ≈ 1, συνεπώς Τcosθ ≈ Τ0 (Φυσική, 
τομ. 3, Berkeley, σελ. 60). Η Εξισ. (22) γίνεται: 

sin sin2 2 1 1 2 2 2 1 1 1 0 2 0 1cos tan cos tan tan tan( )xF t T T T T T Tθ θ θ θ θ θ θ θ=− − = − ==  

0 0 02 1 2 1

d d d d
dx dx dx dx

T T Tψ ψ ψ ψ       − = −       
       

=  
  

                                                          (23) 

Θεωρούμε τη συνάρτηση που ορίζεται από τη σχέση: 

( ) ( ),x t
f x

x

ψ∂
=

∂
                                                                                                     (24) 

διατηρώντας το t σταθερό και αναπτύσσοντας μία σειρά Taylor περί το σημείο x=x2: 

1 1

2
2

22 1 2 1 2 1
1

( ) ( ) ( ) ( )
2

df d f
f x f x x x x x

dx dx
= + − ⋅ + ⋅ − ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

  
  

   
                            (25) 

Αφού  x2 – x1 = Δx, όπως προκύπτει από το Σχ.4 αριστερά, θεωρώντας ότι το Δx είναι 
πολύ μικρό και παίρνοντας το όριο (για πολύ μικρό Δx), οι τετραγωνικοί όροι και οι 
όροι μεγαλύτερης τάξης μπορούν να αμεληθούν: 

  

            (26) 
 

( )x, t
x

∂ψ
∂

1

2

22 1
( , ) ( , ) ( , )

( ) ( )
df d x t x t x t

f x f x x x x x
dx dx x x x x

ψ ψ ψ∂ ∂ ∂ ∂
− = ∆ ⋅ = ∆ ⋅ = ∆ ⋅ = ∆ ⋅

∂ ∂ ∂ ∂

     
     
     
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και αντικαθιστώντας τις Εξισ. (24) και (26) στην (23), η συνολική δύναμη που ασκείται 
στο τμήμα Δx είναι: 

2

20
( , )

( )x
x t

F t T x
x

ψ
⋅

∂
= ∆ ⋅

∂
                                                                                         (27) 

Εφαρμόζοντας το Νόμο του Νεύτωνα Δύναμη = Μάζα x Επιτάχυνση:  
 

                                                 

όπου: ψ(x,t) μετατόπιση= , 0
ψ(x,t)

ταχύτητα , ,
t

xρ
∂

= ∆Μ = ⋅∆
∂

 και 
2

2
ψ(x,t)

επιτάχυνση
t

∂
=

∂
 

Εξισώνοντας  (27) and (28) έχουμε: ( )2 2

2 20 0
, ( , )

x
x t x t

x F T x
t x

ψ ψ
ρ

∂ ∂
⋅ ∆ ⋅ = = ⋅ ∆ ⋅

∂ ∂
               (29) 

Δηλαδή: 
2 2

0
2 2

0

( , ) ( , )Tx t x t

t x

ψ ψ

ρ

∂ ∂
= ⋅

∂ ∂
                                                                                         (30) 

Αντικαθιστώντας τις Εξισ. (19) και (20) στην (30): 
ρ

ω= ⋅ ⋅
2

2 0
2

0

( )
- ( )

d A x
A x

Tdx
                                                                                        (31) 

Η γενική εξίσωση μιας ταλάντωσης στο "χωρικό πεδίο" μπορεί να αναγραφεί ως 
(Φυσική, τομ. 3, Berkeley, σελ. 62): 

          ( ) sin 2 cos 2
x x

y A x A Bπ π
λ λ

= = ⋅ + ⋅
   
   
   

                                                                      (32) 

Το μήκος κύματος λ είναι σε μέτρα ανά κύκλο ταλάντωσης στο "χωρικό πεδίο" κατά 
μήκος του άξονα x, δηλαδφή η απόσταση στην οποία συμπληρώνεται ένας πλήρης 
κύκλος. Παραγωγίζοντας δύο φορές: 

2 22 2

2 2
( ) 2 2

( )
d y d A x

A x y
dx dx

π π

λ λ
= = − ⋅ = − ⋅

   
   
   

                                                         (33) 

Συγκρίνοντας τις Εξισ. (31) και (33) έχουμε: 

( )2 0

0

22
2 0 0

0 0

2
2 2

T T T
πν

ρ ρπ
ω

λ

ρπ
⋅== ⋅ = ⋅

       
           Τ        

                                              (34) 

Από τις Εξισ. (15) και (34) οδηγούμεθα στις: 
                                                                   

                                                             
                                                                       (35)   

                                                                            
  

                                                                                       (36)      
 
 

( ) ( )2

2

,
(28)x

x t
F t

t
ψ∂

= ∆Μ ⋅
∂

0
0

0

T

T
υ

ρ

λ
= = = σταθερά

TT
T 2 2
λ λ

υ = ⇒ λ = ⋅υ⇒ = ⋅υ
π π
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Η εξίσωση (35) προκύπτει στην περίπτωση στάσιμου κύματος στον άξονα rr' του 
Σχήματος 5 κινούνται αντίθετα δύο κύματα έχοντας ακριβώς την ίδια μορφή x=asin(ωt) 
συνεπώς στο σημείο Ο, x=2asin(ωt) και στο σημείο Ρ(r) σε απόσταση +r (και -r) σε 
χρόνο r/υ θα καταγραφούν ταλαντώσεις (Κανέλος, 1965, περισσότερες λεπτομέρειες 
στο Giannakos, 2010 b): 

                                 
                                (37) 

 
 
Η αλληλεπίδραση των δύο κυμάτων δίδει ακριβώς την ίδια μορφή με την Εξισ. (35) και 
(36) [βλ. Giannakos, 2010 b].  Σε ελεύθερη ταλάντωση ενός συστήματος "μάζα-
ελατήριο" η μετατόπιση μπορεί να εκφρασθεί -με κατάλληλη εκλογή των αξόνων- ως 
(βλ. Σχ. 4 δεξιά): 

0 0 0 0sin sin cos cosn n n n n ny y t u t y y t u tω ω ω ω ω ω′= ⋅ = ⋅ ⇒ = ⋅ ⋅ = ⋅ ⋅                 (38)  
όπου η πρώτη παράγωγος είναι η ταχύτητα που μηδενίζεται στα σημεία -π/2ω και 
+π/2ω δηλαδή -Τ/4 και +Τ/4. Οι μέγιστες τιμές των y και y' δίδονται: 

 
                                                     (39) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Σχήμα 5 Στάσιμο κύμα 
 
Από την Εξισ. (29) αντικαθιστώντας m αντί ρ0 και y αντί ψ έχουμε: 

0 0

2 2

2 20
x x x x

y y
m x T x

t x= =

∂ ∂
⋅ ∆ ⋅ = ⋅ ∆ ⋅

∂ ∂
                                                                      (40) 

Από την Εξισ. (33) στο σημείο x=x0 όπου ymax=u0 (βλ. Σχ. 4 δεξιά), για τη θέση όπου 
εφαρμόζει το φορτίο του άξονα του οχήματος και χρησιμοποιώντας την Εξισ. (33) 
λαμβάνουμε: 

        0

0

2 2 2 22

2
2 2 2 2

- - -
n n n

d y

dx x x

uuπ π π υ π λ ν

λ λ λ ω λ ωω
= =

=

⋅
⋅ = ⋅ = ⋅ == − ⋅

       
       
       



 

2
2 2

2

⋅ ⋅
= − ⋅ = −

   
   
   

Tπ λ ν π

λ π λ
                                                                              (41) 

max
max 0 max 0 0, n

n

yy u y u uω
ω
′

′= = ⋅ ⇒ =

sin , sinr r
r ry a t y a tω ω
υ υ+ −

      = ⋅ − = ⋅ +            
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και από την Εξισ. (33) και χρησιμοποιώντας την Εξισ. (38) και (15):   

0 0

2 2

2 20 0
2

2x x x x

m x T x m T
t t

y yπ λ

λ π= =

∂ ∂
⋅ ∆ ⋅ = − ⋅ ∆ ⋅ ⇒ ⋅ ⋅ = −

∂ ∂

 
 
 

                               (42) 

Η Εξισ. (42) αναφέρεται στην δεξιά ή αριστερά τέμνουσα δύναμη αντίστοιχα στο 
σημείο εφαρμογής του φορτίου του άξονα του οχήματος.  Η συνολική δύναμη είναι 
διπλάσια. Από τις Εξισ. (12) και (47) σε συνδυασμό με την (42) έχουμε: 

0 0 0

0
0

2 2 2
42 2 22 2 2

x x x x x x

T m
y y EJ

T m m
t t t

Q y
U y ολικο

ολικη
λ

π ρ= = =

= = = ⋅
∂ ∂ ∂

⋅ ⋅ = ⋅ ⋅ ⋅
∂ ∂ ∂

⋅
⋅



                   (43) 

Η ανά μονάδα μήκους μάζα γραμμής ισούται με το βάρος σιδηροτροχιάς συν το βάρος 
του ημιστρωτήρα ανηγμένο ανά μέτρο μήκους το οποίο μπορεί να προστεθεί στη Εξισ. 
(8α). Συνεπώς στην Εξισ. (8α) ο όρος που έχει παραλειφθεί από την Εξισ. (8) είναι: 

 
 

 
που είναι ο αριστερός όρος της Εξισ. (40), η οποία σε συνδυασμό με την Εξισ. (42) και 
(43) δίδει:  

0

0

2 2 2

2 2 2
0 x x

m
d d Q

dx m
dt dt U

y y d y
y dt

ρΓΡΑΜΜΗΣ

=

⋅ = ⋅ ⋅ = ⋅ ⋅
⋅∫                                 (44) 

αν ονομάσουμε  y0 τη βύθιση στο σημείο x0 όπου εφαρμόζεται το φορτίο Q, και m τη 
μάζα γραμμής ανά μέτρο μήκους λαμβάνουμε [με δεδομένα: Q/y=hΓΡΑΜΜΗΣ, U=ρ/ℓ και 
Εξισ. (7)]: 

00

34 42 22 2 Q EJ
U y U

Q
h E J U

y ΓΡΑΜΜΗΣ ⇒ = ⋅
⋅

= = ⋅ ⋅ ⋅                                   (45) 

και από την Εξισ.  (44): 

0

2 2
4

2 22 2
x x

m
d E J d y

m
dt U dt

y
ΓΡΑΜΜΗΣ

=

⋅ =
⋅

⋅ ⋅ ⋅                                                   (46) 

με τον τρόπο αυτό μπορούμε να αντικαταστήσουμε την κατανεμημένη κατά μήκος της 
γραμμής μάζα με μία συγκεντρωμένη μάζα: 

4 42 2 2 2
E J E J

m m m m
U ρΓΡΑΜΜΗΣ =
⋅ ⋅ ⋅

′ = = ⋅ ⋅ ⋅ ⋅


                                        (47) 

Από τον τύπο για τη δράση/αντίδραση της συμβατικής ανάλυσης της καταπόνησης της 
γραμμής (από την οποία προκύπτει το Α ̅στατ  [Γιαννακός, 2002] ):  

4max 2 2

Q
R

E J
ολικορ⋅

= ⋅
⋅ ⋅





                                                                                (48) 

και χρησιμοποιώντας τη σχέση U=ρ/ℓ, η Εξισ. (48) γίνεται: 

4 4

max
2 2 2 2

Q E J E J

R U ρ

⋅ ⋅ ⋅ ⋅
= ⋅ = ⋅
   
   
   

 

                                                           (49) 

2

2m
d

dt

y
ΓΡΑΜΜΗΣ ⋅
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από την οποία η Εξισ.  (47) γίνεται: 

max

Q
m m m

RΓΡΑΜΜΗΣ
⋅

′ = = ⋅


  μάζα γραμμής που συμμετέχει στην κίνηση των Μ.Α.Μ.    (50) 

όπου:  
 

                                                                                          (51) 
 

οπότε η Εξισ. (50) γίνεται (χωρίς να λαμβάνεται υπ' όψη η απόσβεση): 
 

 
   (52)   
 
 

5 ΑΠΟΤΕΛΕΣΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΠΙ ΓΡΑΜΜΗΣ 

Έγιναν πειραματικές μετρήσεις από τους Βρετανικούς Σιδηροδρόμους σε περίπτωση 
σφαλμάτων της επιφάνειας κύλισης της σιδηροτροχιάς που προκαλούν κρουστική 
καταπόνηση της γραμμής για ταχύτητες 160 km/h. Σύμφωνα με τους Jenkins et al. 
(1974) η μάζα της γραμμής ανά μονάδα μήκους για τον υπολογισμό της δύναμης Ρ2 
δίδεται: 

1/4
3

, ,
2 4

where sleeper
TR rail

mm k
m m m k

EJ

ρ
λ

λ
= = + = =

 
 
  

 (53) 

όπου η αντιστοιχία των συντελεστών κατά τους Jenkins et al., (1974) και του παρόντος 
είναι: (1) ο συντελεστής k ισούται  με το U του παρόντος, (2) ο συντελεστής λ των Jen-
kins et al. δεν είναι το μήκος κύματος αλλά ισούται με το K του παρόντος (βλ. Εξισ.  
(10)), και συνεπώς η κατά τους Jenkins et al. μάζα γραμμής είναι:   

/ /

0.25

0.25
3 1 3 4

2 2

3
2

4

ή ή
ά ά

m m EJ
m m m

k

m
k
EJ

στρωτ ρα στρωτ ρα
σιδ χι ς σιδ χι ςλΓΡΑΜΜΗΣ = ⋅ + ⋅ = ⋅ + ⋅

 
      ⋅ =       

     
 

 

(54) 

6 ΑΠΟΚΛΙΣΗ  ΠΕΙΡΑΜΑΤΙΚΩΝ ΚΑΙ ΘΕΩΡΗΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ 

Η θεωρητική ανάλυση παρουσιάσθηκε στο Γιαννακός (2001). Η σύγκριση των 
πειραματικών αποτελεσμάτων προς τη θεωρητική ανάλυση παρουσιάσθηκε στο Gian-
nakos (2007), και συνοπτικά παρουσιάζεται στο Σχήμα 6. Αφορά τη σύγκριση των 
Εξισ. (52) και (54). Οι μετρηθείσες επί γραμμής τιμές είναι χαμηλότερες από τις 
προκύπτουσες από τη θεωρητική ανάλυση. Υπάρχει απόκλιση 25% με βάση τα 
θεωρητικά αποτελέσματα και 33% με βάση τα πειραματικά.  

Για τον υπολογισμό χρησιμοποιήθηκαν τα ακόλουθα δεδομένα: 
Στατικό Φορτίο τροχού 112,5 kN 
σιδηροτροχιά  UIC 60,  
ολόσωμος στρωτήρας από προεντεταμένο σκυρόδεμα τύπου  B70,  
σύνδεσμος W14,  

0= = +


sleeper
rail

m
m mρ

/4 4
max

4
2 2 2 άm

mQ l E J EJ
m m m

R
στρωτηρα

σιδ χι ς
ολικο ολικορ ρΓΡΑΜΜΗΣ = ⋅

⋅ ⋅ ⋅
= ⋅ ⋅ = ⋅ ⋅ +

   
   

  

 


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συντελεστής επιφάνειας κύλισης σιδηροτροχιάς k=9 (βλ. Γιαννακός, 2002),  
ύψος Κ.Β. οχήματος από κεφαλή σιδ/χιάς 1,5 m,  
ανεπάρκεια υπερύψωσης 110 mm,  
ρσκυρου=380 kN/mm,  
μέγιστη ταχύτητα V= 200 km/h 
Μ.Α.Μ. οχήματος mΜΑΜ=1,5 t / τροχό 
ρυποδομής= 40, 60, 80, 100, 250 kN/mm 
 

 
Σχήμα 6 Απόκλιση πειραματικών και θεωρητικών αποτελεσμάτων (Giannakos, 

2007)  
     
 Η διαφορά οφείλεται: (1) στο γεγονός ότι δεν ελήφθη υπόψη η απόσβεση της 

γραμμής ενώ στην πραγματικότητα -αν και ασθενής όπως σε όλες τις κατασκευές 
Πολιτικού Μηχανικού- υπάρχει, και (2) χρησιμοποιήθηκε ο συντελεστής στατικής 
δυσκαμψίας της γραμμής ρtotal σε ένα καθαρά δυναμικό φαινόμενο όπως η κίνηση 
συρμών αντί της δυναμικής δυσκαμψίας hΓΡΑΜΜΗΣ. Βέβαια η επιρροή στη συνολική 
τιμή των Μ.Α.Μ. (οχήματος και γραμμής) κυμαίνεται μεταξύ 3.2% και 9.08%.   

7 ΕΠΙΡΡΟΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΑΚΑΜΨΙΑΣ hΓΡΑΜΜΗΣ KAI ΤΗΣ ΑΠΟΣΒΕΣΗΣ 
ΤΗΣ ΓΡΑΜΜΗΣ  

Το θέμα παρουσιάζεται αναλυτικά στο Giannakos (2010 b). Από τη θεωρία των 
ταλαντώσεων με απόσβεση είναι γνωστό (Clough et al.,  1993) ότι αν η περίοδος μιας 
αρμονικής ταλάντωσης -χωρίς απόσβεση- Tn η περίοδος μιας ταλάντωσης με απόσβεση  
TD είναι: 

 
                                                                                                          (55) 

 
 

όπου ζ είναι η αναλογία απόσβεσης ή ποσοστό κρίσιμης απόσβεσης (Chopra, 1995). 
Λόγω της Εξισ. (55) το μήκος κύματος σε ταλάντωση με απόσβεση γίνεται: 

 
                                                                         (56) 

 
 

n
D 2

TT
1

=
−ζ

2

2

T 1 T
1

λ = υ⋅ ⇒ λ ⋅ − ζ = υ⋅
− ζ
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Σχήμα 7 (από το Giannakos, 2010 b) Σύγκριση θεωρητικών και πειραματικών 
αποτελεσμάτων για τον υπολογισμό της μάζας γραμμής που συμμετέχει στην κίνηση 
των Μη Ανηρτημένων Μαζών των οχημάτων: (1) χρησιμοποιώντας το ρολικο, (2) 
χρησιμοποιώντας το hΓΡΑΜΜΗΣ και (3) χρησιμοποιώντας το hΓΡΑΜΜΗΣ και συντελεστή 
απόσβεσης ζ=0,30 σε σύγκριση με τις μετρήσεις των Jenkins et al., 1974 [Giannakos, 
2010 b]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Σχήμα 8 Σύγκριση θεωρητικών και πειραματικών αποτελεσμάτων για τον 
υπολογισμό της μάζας γραμμής που συμμετέχει στην κίνηση των Μη Ανηρτημένων 
Μαζών των οχημάτων:     (1) χρησιμοποιώντας το hΓΡΑΜΜΗΣ και συντελεστή απόσβεσης 
ζ=0,10, (2) χρησιμοποιώντας το hΓΡΑΜΜΗΣ και συντελεστή απόσβεσης ζ=0,2, (3) 
χρησιμοποιώντας το hΓΡΑΜΜΗΣ και συντελεστή απόσβεσης ζ=0,30 και σε σύγκριση (4) 
με τις μετρήσεις των Jenkins et al., 1974. 
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Συνεπώς το μήκος κύματος λ θα πρέπει να πολλαπλασιασθεί με τον συντελεστή 
 

και η Εξισ. (52) γίνεται:                          
 
 
 

                                     (57) 
 

 
Η εξίσωση (57) λαμβάνει υπ' όψη τη δυναμική δυσκαμψία της γραμμής hΓΡΑΜΜΗΣ 

και το συντελεστή απόσβεσης ζ που ελήφθη ζ= 0,3. Τα αποτελέσματα παρουσιάζονται 
στο Σχήμα 7 όπως παρουσιάζεται στο Giannakos (2010 b). Η απόκλιση μεταξύ των 
αποτελεσμάτων της θεωρητικής ανάλυσης (λαμβανόμενα ως βάση) και των επί 
γραμμής μετρήσεων κυμαίνεται από +0.61% για ενδοτική/ "μαλακή" υποδομή 
(χαλικώδη ρυποδομής=40kN/mm) έως +4.19% για ανυποχώρητη -πολύ δύσκαμπτη- 
υποδομή (βραχώδης πυθμένας σήραγγας ή κατάστρωμα γέφυρας από σκυρόδεμα με 
πολύ μικρό πάχος σκύρου) στην περίπτωση που μόνο η hΓΡΑΜΜΗΣ λαμβάνεται υπ' όψη 
και αμελείται η απόσβεση. Αν ληφθεί υπ' όψη και η απόσβεση, για ζ=0.3 (σύμφωνα με: 
[SNCF, 1981, Prud'homme, 1966] 0.2≤ζ≤0.5 για τη γραμμή) και η δυναμική δυσκαμψία 
της γραμμής hΓΡΑΜΜΗΣ η απόκλιση μεταξύ των αποτελεσμάτων της θεωρητικής 
ανάλυσης και των μετρήσεων επί γραμμής κυμαίνεται μεταξύ -4,20% για ενδοτική/ 
"μαλακή" υποδομή (χαλικώδη ρυποδομής=40kN/mm) έως  -0,44%  για ανυποχώρητη -
πολύ δύσκαμπτη- υποδομή με ρυποδομής=250kN/mm (βραχώδης πυθμένας σήραγγας ή 
κατάστρωμα γέφυρας από σκυρόδεμα με πολύ μικρό πάχος σκύρου). Αν ληφθεί ως 
βάση η τιμή των Jenkins et al.,  (δηλαδή ως παρονομαστής στη διαίρεση) τα ποσοστά 
διαφοροποιούνται λίγο.  

8 ΠΑΡΑΜΕΤΡΙΚΗ ΕΠΙΛΥΣΗ ΓΙΑ ΤΗΝ ΕΠΙΡΡΟΗ ΤΗΣ ΜΕΤΑΒΟΛΗΣ ΤΟΥ 
ΣΥΝΤΕΛΕΣΤΗ ΑΠΟΣΒΕΣΗΣ ζ ΑΠΟ 0,10 ΕΩΣ 0,30 

Στο παρόν άρθρο γίνεται παραμετρική επίλυση για μεταβολή του συντελεστή ζ από 
0,10 έως 0,30 -και με δυναμικό συντελεστή γραμμής hΓΡΑΜΜΗΣ-, και συγκρίνονται τα 
αποτελέσματα με τις μετρήσεις των Jenkins et al. (1974). Τα αποτελέσματα 
παρουσιάζονται στο Σχήμα 8. Για διακύμανση του συντελεστή δυσκαμψίας της 
υποδομής ρυποδομής από 40 έως 100 kN/mm, περιοχή στην οποία ανήκουν οι 
περισσότερες σιδηροδρομικές υποδομές διεθνώς, (περισσότερο χαρακτηριστική η τιμή 
ρυποδομής=100 kN/mm), βλέπουμε ότι όσο η υποδομή είναι "ενδοτικότερη" ή 
"μαλακότερη" και συνεπώς ευεπίφορη σε "χειροτέρευση της γεωμετρίας της γραμμής" 
και αποσταθεροποίησή της, η τιμή της απόσβεσης είναι μικρή όπως μετρήθηκε επί 
γραμμής.  Η απόκλιση θεωρητικών τιμών και των τιμών των μετρήσεων (Σχήμα 8) 
κυμαίνεται (με παρονομαστή τις μετρήσεις των Jenkins et al.) από +0,11% για ζ=0,1 
έως -4,02% για ζ=0,3 στην περίπτωση πολύ ενδόσιμης υποδομής με ρυποδομής=40kN/mm 
(χαλικώδης υποδομή) και από +3,85% για ζ=0,1 έως -0,44% για ζ=0,3 για 
ανυποχώρητη -πολύ δύσκαμπτη- υποδομή με ρυποδομής=250kN/mm (βραχώδης πυθμένας 
σήραγγας ή κατάστρωμα γέφυρας από σκυρόδεμα με πολύ μικρό πάχος σκύρου). 

2
4

42 1
 

= ⋅ ⋅ + ⋅ − 
 





ζsleeper
TR rail

TR

mEJm m
h

21−ζ
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9 ΣΥΜΠΕΡΑΣΜΑΤΑ 

Στο παρόν άρθρο παρουσιάσθηκαν συνοπτικά τέσσερεις μέθοδοι της διεθνούς 
βιβλιογραφίας για τον υπολογισμό των δράσεων επί της εσχάρας γραμμής και των 
στρωτήρων και συγκρίθηκαν τα αποτελέσματά τους στην παρατηρηθείσα εκτεταμένη 
ρηγμάτωση στρωτήρων σκυροδέματος στο ελληνικό δίκτυο. Οι Μη Ανηρτημένες 
Μάζες παίζουν πολύ σημαντικό ρόλο στη διαμόρφωση της δυναμικής συνιστώσας των 
δράσεων. Η συμμετοχή της μάζας γραμμής που συμμετέχει στην κίνηση των Μ.Α.Μ. 
του οχήματος αποτέλεσε αντικείμενο του παρόντος άρθρου και διερευνήθηκε η επιρροή 
της μεταβολής της απόσβεσης της οφειλόμενης στη γραμμή όπως εκφράζεται με το 
συντελεστή απόσβεσης ζ και για μεταβολή του από 0,1 έως 0,3 συγκρίνοντας τα 
αποτελέσμα της θεωρητικής ανάλυσης με τα αποτελέσματα μετρήσεων επί γραμμής.  Η 
απόκλιση θεωρητικών τιμών και των τιμών των μετρήσεων κυμαίνεται από +0,11% για 
ζ=0,1 έως -4,02% για ζ=0,3 στην περίπτωση πολύ ενδόσιμης υποδομής με 
ρυποδομής=40kN/mm (χαλικώδης υποδομή) και από +3,85% για ζ=0,1 έως -0,44% για 
ζ=0,3 για ανυποχώρητη -πολύ δύσκαμπτη- υποδομή με ρυποδομής=250kN/mm (βραχώδης 
πυθμένας σήραγγας ή κατάστρωμα γέφυρας από σκυρόδεμα με πολύ μικρό πάχος 
σκύρου). Γενικά η θεωρητικές τιμές βρίσκονται πολύ κοντά στις μετρηθείσες και ο 
θεωρητικός τύπος μπορεί να χρησιμοποιηθεί αξιόπιστα.  

ΒΙΒΛΙΟΓΡΑΦΙΑ 

Alias J. , 1984,  "La Voie Ferree",  Eyrolles, Paris, 1984 
AREMA, 2005, Manual for Railway Engineering, Revised Version, June  
Chopra A., 1995, "Dynamics of Structures – Theory and applications to earthquake en-

gineering", Prentice-Hall Inc., USA  
Clough R., Penzien J., "Dynamics of Structures", 2nd edition, Mc Graw Hill Internation-

al Editions, 1993  
Eisenmann J., 2004, "Die Schiene als Tragbalken", Eisenbahningenieur 5/2004. 
Fastenrath Fritz, 1981, "Railroad Track - Theory and Practice", Frederic Ungar 

Pub.Co., New York, part 2, "The Rail as support and Roadway, theoretical princi-
ples and practical examples", by J. Eisenmann.  

Giannakos K., 2011, "Heavy Haul Railway Track Maintenance and Use of Resilient 
versus Stiff Fastenings", approved to be published in forthcoming issue of 
TRR/2011 (possibly December), Washington D.C., U.S.A.,  January 23-27, TRB 
90th Annual Meeting proceedings (AR060 "Railway Maintenance" Committee).   

Giannakos K., 2010 a, “Loads on track, Ballast Fouling and Life-cycle under Dynamic 
Loading in Railways”, Journal of Transportation Engineering, ASCE, Volume 136, 
Issue 12, December 2010, pp. 1075-1084.  

Giannakos K., 2010 b,  “Theoretical calculation of the track-mass in the motion of un-
sprung masses in relation to track dynamic stiffness and damping”, International 
Journal of Pavement Engineering (IJPE), Special Rail Issue “High-Speed Railway 
Infrastructure: Recent Developments and Performance”,  volume 11, number 4, 
August 2010, pp. 319-330.   

Giannakos K., Loizos A., 2009, “Evaluation of actions on concrete sleepers as design 
loads–Influence of fastenings”, International Journal of Pavement Engineering (IJPE), 
November 2009, Volume 11, Issue 3 June 2010 , pages 197 – 213. 



 
18 

Giannakos K., 2007, "Influence of high-resilient fastenings on the track mass 
participating in the motion of unsprung masses", Advanced Characterization of 
Pavement and Soil Eng. Materials,Athens, Greece, 20 – 22 June 2007, Proceedings 

Giannakos K., 2004, "Actions on the Railway Track", Papazissis publications, Athens 
2004, www.papazisi.gr.   

Hay W., 1982, Railroad Engineering, John Wiley & Sons 
Jenkins H. – Stephenson J. –. Clayton G – Morland G. – Lyon D., 1974, "Incidences des 

parametres caracteristigues de la voie et des vehicules sur les efforts dynamigues 
verticaux gui se developpent entre rail et roue",  Rail International 10/1974, 682-
702,  

Müller – Boruttau F. H., Ebersbach D., Breitsamter N., 1998, "Dynamische 
Fahrbahnmodelle für HGV – Strecken und Folgerungen für Komponenten", 
Eisenbahntechnische Rundschau, (47) Heft 11/ November   

Prud’ homme A., Erieau, J., 1976, "Les nouvelles traverses en beton de la SNCF", 
RGCF-2. 

Prud’ homme A., 1966, "Sollicitations statiques et dynamiques de la voie", S.N.C.F. – 
Direction des Installations Fixes, 3/1966, σελ 32-34.  

Resnick R., Halliday D.,  1966, "Physics", John Wiley & sons Inc  
Selig E., Waters J., 1994/2000, "Track Geotechnology and Substructure Management", 

Thomas Telford, 1994, reprinted 2000. 
SNCF/Direction de l’ Equipement, [1981] “Mechanique de la Voie”. Octobre. 
Winkler  E., 1867, Die Lehre von der Elastizität und Festigkeit (The Theory of Elasticity 

and Stiffness), H. Dominicus, Prague. 
Zimmermann H., 1941, "Die Berechnung des Eisenbahnoberbaues", Verlag von Wil-

helm Ernst & Sohn, Berlin. 
Γιαννακός Κ., 2010, "Επιλεγμένα Θέματα Σιδηροδρομικής", Πανεπιστήμιο Θεσσαλίας, 

Σχ. Πολιτικών Μηχανικών. 
Γιαννακός Κ., 2002, "Δράσεις στη Σιδηροδρομική Γραμμή", εκδ. Παπαζήση, Αθήνα, 

2002, www.papazisi.gr.   
Γιαννακός Κ., 2001, "Θεωρητικός Υπολογισμός της Μάζας Γραμμής που συμμετέχει στην 

Κίνηση των Μη Ανηρτημένων Μαζών των Οχημάτων και Σύγκριση με Μετρήσεις", 
ΤΕΕ - Τεχνικά Χρονικά, Επιστημονική Έκδοση, 3/ 2001.  

Γιαννακός Κ., 2000, "Διαλειτουργικότητα στους Σιδηροδρόμους: ένα μοντέλο ανάπτυξης 
για τη Νοτιοανατολική Ευρώπη", διδακτορική διατριβή,  ΑΠΘ, Πολυτεχνική Σχολή, 
επιβλέπων καθηγητής Γιώργος  Γιαννόπουλος. 

Γιαννακός Κ., Βλασοπούλου Ι., 1994, "Φόρτιση Στρωτήρων από Σκυρόδεμα και 
Εφαρμογή για Διμερείς Στρωτήρες Σκυροδέματος", ΤΕΕ - Τεχνικά Χρονικά, 
Επιστημονική Έκδοση, Τόμος 14, 2/1994.  

Κανέλλος  Σ., 1965, "Ακουστική - Οπτική", εκδ. Παπαδημητρόπουλος, Αθήναι. 
"Φυσική - Τόμος 3 - Κυματική", University of California at Berkeley, 1976, ελληνική 
έκδοση, εργαστήριο Φυσικής Ε.Μ.Π. 
"Φυσική - Τόμος 1 - Μηχανική", University of California at Berkeley, 1976, ελληνική 

έκδοση, εργαστήριο Φυσικής Ε.Μ.Π. 
 
 


	1 ΕΙΣΑΓΩΓΗ
	2 ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΔΡΑΣΕΩΝ/ΑΝΤΙΔΡΑΣΕΩΝ ΕΠΙ ΣΤΡΩΤΗΡΩΝ
	3 ΑΛΛΗΛΕΠΙΔΡΑΣΗ ΟΧΗΜΑΤΟΣ - ΣΙΔΗΡ. ΓΡΑΜΜΗΣ ΩΣ ΣΥΝΟΛΟ ΕΛΑΤΗΡΙΩΝ ΑΠΟΣΒΕΣΤΗΡΩΝ 
	4 ΘΕΩΡΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΜΑΖΑΣ ΓΡΑΜΜΗΣ ΠΟΥ ΣΥΜΜΕΤΕΧΕΙ ΣΤΗΝ ΚΙΝΗΣΗ ΤΩΝ Μ.Α.Μ. 
	5 ΑΠΟΤΕΛΕΣΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΠΙ ΓΡΑΜΜΗΣ
	6 ΑΠΟΚΛΙΣΗ  ΠΕΙΡΑΜΑΤΙΚΩΝ ΚΑΙ ΘΕΩΡΗΤΙΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ
	7 ΕΠΙΡΡΟΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΑΚΑΜΨΙΑΣ hΓΡΑΜΜΗΣ KAI ΤΗΣ ΑΠΟΣΒΕΣΗΣ ΤΗΣ ΓΡΑΜΜΗΣ 
	8 ΠΑΡΑΜΕΤΡΙΚΗ ΕΠΙΛΥΣΗ ΓΙΑ ΤΗΝ ΕΠΙΡΡΟΗ ΤΗΣ ΜΕΤΑΒΟΛΗΣ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΑΠΟΣΒΕΣΗΣ ζ ΑΠΟ 0,10 ΕΩΣ 0,30
	9 ΣΥΜΠΕΡΑΣΜΑΤΑ

